Abstract

A simple analysis of the polarization resistance of the electrodes as function of the loading mass for various cycling rates allows identifying the fading mechanism on cycling of NiSb2, a typical conversion material: pulverization of active mass and further degradation of the electronic wiring at high rate and agglomeration of the active mass at low rate. Such rate-control of the degradation mechanism might reflect a thermodynamic instability of interfaces in the lithiated compound, which would however be in kinetic competition with the Lithium de-insertion. The analysis of the electrode polarization resistance fingerprint to rapidly identify the failure mechanism in a composite electrode can be generalized to other active materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.