Abstract

BackgroundFractional flow reserve (FFR) is a widely used gold standard to evaluate ischemia-causing lesions. A new method of non-invasive approach, termed as AccuFFRct, for calculating FFR based on coronary computed tomography angiography (CCTA) and computational fluid dynamics (CFD) has been proposed. However, its diagnostic accuracy has not been validated.ObjectivesThis study sought to present a novel approach for non-invasive computation of FFR and evaluate its diagnostic performance in patients with coronary stenosis.MethodsA total of 54 consecutive patients with 78 vessels from a single center who underwent CCTA and invasive FFR measurement were retrospectively analyzed. The CT-derived FFR values were computed using a novel CFD-based model (AccuFFRct, ArteryFlow Technology Co., Ltd., Hangzhou, China). Diagnostic performance of AccuFFRct and CCTA in detecting hemodynamically significant coronary artery disease (CAD) was evaluated using the invasive FFR as a reference standard.ResultsDiagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for AccuFFRct in detecting FFR ≤ 0.8 on per-patient basis were 90.7, 89.5, 91.4, 85.0 and 94.1%, respectively, while those of CCTA were 38.9, 100.0, 5.71, 36.5 and 100.0%, respectively. The correlation between AccuFFRct and FFR was good (r = 0.76 and r = 0.65 on per-patient and per-vessel basis, respectively, both p < 0.0001). Area under the curve (AUC) values of AccuFFRct for identifying ischemia per-patient and per-vessel basis were 0.945 and 0.925, respectively. There was much higher accuracy, specificity and AUC for AccuFFRct compared with CCTA.ConclusionsAccuFFRct computed from CCTA images alone demonstrated high diagnostic performance for detecting lesion-specific ischemia, it showed superior diagnostic power than CCTA and eliminated the risk of invasive tests, which could be an accurate and time-efficient computational tool for diagnosing ischemia and assisting clinical decision-making.

Highlights

  • Accurate diagnosis of stenosis severity is essential for doctors in therapeutic decisionmaking regarding the need for percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG)

  • There was much higher accuracy, specificity and Area under the curve (AUC) for AccuFFRct compared with coronary computed tomography angiography (CCTA)

  • The anatomic information obtained by CCTA is unable to reflect the physiological and physical influence on blood flow, which results in the poor correlation between lesion-specific ischemia and stenoses detected by CCTA [2,3,4]

Read more

Summary

Introduction

Accurate diagnosis of stenosis severity is essential for doctors in therapeutic decisionmaking regarding the need for percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG). Coronary computed tomography angiography (CCTA) has emerged as a useful tool for evaluating coronary artery disease (CAD) severity [1]. Invasive fractional flow reserve (FFR), which assesses the ratio of flow across stenoses to putative flow in the absence of stenosis, is a well-established reference standard for evaluating the ischemic potential of individual lesions [5, 6]. Fractional flow reserve (FFR) is a widely used gold standard to evaluate ischemia-causing lesions. A new method of non-invasive approach, termed as AccuFFRct, for calculating FFR based on coronary computed tomography angiography (CCTA) and computational fluid dynamics (CFD) has been proposed.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.