Abstract

Based on the Climate Precipitation Center Morphing (CMORPH) precipitation data and the fifth-generation ECMWF reanalysis (ERA5) data, moist static energy (MSE) diagnosis for 14 cases of southerly warm-sector heavy rainfall with warm shear (WSWR) along the Yangtze-Huaihe coastal area (YHCA) was conducted. The results indicate that the vertically integrated MSE tendency peaks before the precipitation reaches its maximum. This suggests a rapid MSE accumulation leading up to precipitation onset, with moist enthalpy advection dominantly influencing this increase. The vertical advection of MSE is negative, suggesting that upward motions and rainfall play a crucial role in consuming MSE. Vertical integrated MSE budget analysis for the nine cases of nocturnal rain shows that moist enthalpy advection was the primary contributor, driven mainly by meridional latent energy advection. Scale analysis shows that the combination of meridional disturbance wind and the mean specific humidity field results in pronounced meridional latent energy advection. For the five cases of non-nocturnal rain, the net energy flux was dominant before the onset of precipitation, primarily driven by clear-sky net shortwave radiation (SWCS). The meridional internal energy advection also makes a substantial contribution. The scale analysis indicates that the combined effects of the meridional disturbance wind and the average temperature field lead to significant meridional internal energy advection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.