Abstract

AbstractFor mechanically scanning weather radars, precise pointing of the antenna is a key factor in ensuring accurate observation of the atmosphere at far range. Since operational radars typically scan the atmosphere using a series of 360° sweeps at fixed elevation angles, level scanning during azimuthal rotation is also important, but often not actively monitored after installation.One method of gauging pointing accuracy of a radar is to use solar interference which occurs as the antenna sweeps past the sun. By comparing the observed position of the sun with its known position, an estimate of pointing error in both elevation and azimuth can be obtained. A basic model for this error assumes that the radar sweep is perfectly level and that biases in elevation are therefore independent of azimuth. We extend this model to allow for the possibility that the plane of rotation may not be level. Consequently, the direction and severity of tilt may be diagnosed in addition to any constant error in elevation and azimuth pointing.The extended model was applied to a subset of radars from the Australian weather radar network resulting in the discovery of several out of level radars. One radar, Captains Flat near Canberra, showed a severe tilt of 0.81° prompting inspection by a technician. This revealed that mounting studs on the pedestal of the radar tower were badly worn and loose. Correction of this issue resolved the tilt component of the diagnosed elevation error and prevented further mechanical damage to the instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call