Abstract

BackgroundEarly diagnosis of knee osteoarthritis (OA) is important in managing this disease, but such an early diagnostic tool is still lacking in clinical practice. The purpose of this study was to develop diagnostic models for early stage knee OA based on the first 2-year clinical course after the patient’s initial presentation in primary care and to identify whether these course factors had additive discriminative value over baseline factors.MethodsWe extracted eligible patients’ clinical and radiographic data from the CHECK cohort and formed the first 2-year course factors according to the factors’ changes over the 2 years. Clinical expert consensus-based diagnosis, which was made via evaluating patients’ 5- to 10-year follow-up data, was used as the outcome factor. Four models were developed: model 1, included clinical course factors only; model 2, included clinical and radiographic course factors; model 3, clinical baseline factors + clinical course factors; and model 4, clinical and radiographic baseline factors + clinical and radiographic course factors. All the models were built by a generalized estimating equation with a backward selection method. Area under the receiver operating characteristic curve (AUC) and its 95% confidence interval (CI) were calculated for assessing model discrimination. Delong’s method compared AUCs.ResultsSeven hundred sixty-one patients with 1185 symptomatic knees were included in this study. Thirty-seven percent knees were diagnosed as OA at follow-up. Model 1 contained 6 clinical course factors; model 2: 6 clinical and 3 radiographic course factors; model 3: 6 baseline clinical factors combined with 5 clinical course factors; and model 4: 4 clinical and 1 radiographic baseline factors combined with 5 clinical and 3 radiographic course factors. Model discriminations are as follows: model 1, AUC 0.70 (95% CI 0.67–0.74); model 2, 0.74 (95% CI 0.71–0.77); model 3, 0.77 (95% CI 0.74–0.80); and model 4, 0.80 (95% CI 0.77–0.82). AUCs of model 3 and model 4 were slightly but significantly higher than corresponding baseline-factor models (model 3 0.77 vs 0.75, p = 0.031; model 4 0.80 vs 0.76, p = 0.003).ConclusionsFour diagnostic models were developed with “fair” to “good” discriminations. First 2-year course factors had additive discriminative value over baseline factors.

Highlights

  • Diagnosis of knee osteoarthritis (OA) is important in managing this disease, but such an early diagnostic tool is still lacking in clinical practice

  • Models Six clinical course factors were retained in model 1, and 9 (6 clinical and 3 radiographic) course factors were retained in model 2

  • This study showed that information on the early clinical course can help to diagnose early stage knee OA

Read more

Summary

Introduction

Diagnosis of knee osteoarthritis (OA) is important in managing this disease, but such an early diagnostic tool is still lacking in clinical practice. Diagnosis of knee osteoarthritis (OA) is important in managing this disease, as it helps open a ‘treatment window’ for early interventions which could positively modify the disease course [1,2,3,4]. Nowadays, such an early diagnostic tool is still lacking in clinical practice. A better way to minimize the “gap” between “research classification criteria” and “unknown gold criteria” is to obtain a clinical expert consensus-based diagnosis, as we have done in a previous study [15]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.