Abstract
Development of a contact microphone-driven screening framework for the diagnosis of coexisting valvular heart diseases (VHDs). A sensitive accelerometer contact microphone (ACM) is employed to capture heart-induced acoustic components on the chest wall. Inspired by the human auditory system, ACM recordings are initially transformed into Mel-frequency cepstral coefficients (MFCCs) and their first and second derivatives, resulting in 3-channel images. An image-to-sequence translation network based on the convolution-meets-transformer (CMT) architecture is then applied to each image to find local and global dependencies in images, and predict a 5-digit binary sequence, where each digit corresponds to the presence of a specific type of VHD. The performance of the proposed framework is evaluated on 58 VHD patients and 52 healthy individuals using a 10-fold leave-subject-out cross-validation (10-LSOCV) approach. Statistical analyses suggest an average sensitivity, specificity, accuracy, positive predictive value, and F1 score of 93.28%, 98.07%, 96.87%, 92.97%, and 92.4% respectively, for the detection of coexisting VHDs. Furthermore, areas under the curve (AUC) of 0.99 and 0.98 are respectively reported for the validation and test sets. The high performances achieved prove that local and global features of ACM recordings effectively characterize heart murmurs associated with valvular abnormalities. Limited access of primary care physicians to echocardiography machines has resulted in a low sensitivity of 44% when using a stethoscope for the identification of heart murmurs. The proposed framework provides accurate decision-making on the presence of VHDs, thus reducing the number of undetected VHD patients in primary care settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.