Abstract

Breast Cancer is one of the chronic diseases occurred to human beings throughout the world. Early detection of this disease is the most promising way to improve patients’ chances of survival. The strategy employed in this paper is to select the best features from various breast cancer datasets using a genetic algorithm and machine learning algorithm is applied to predict the outcomes. Two machine learning algorithms such as Support Vector Machines and Decision Tree are used along with Genetic Algorithm. The proposed work is experimented on five datasets such as Wisconsin Breast Cancer-Diagnosis Dataset, Wisconsin Breast Cancer-Original Dataset, Wisconsin Breast Cancer-Prognosis Dataset, ISPY1 Clinical trial Dataset, and Breast Cancer Dataset. The results exploit that SVM-GA achieves higher accuracy of 98.16% than DT-GA of 97.44%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.