Abstract

Nowadays, the number of patients with brain tumors is steadily increasing, diagnosis and isolation of the tumor play an important role in the process of treatment and surgery. Due to the high error of manual segmentation of the tumor, algorithms that perform this operation with less error are of great importance. Convolutional neural networks have made great progress in the field of medical imaging. The use of imaging techniques and pattern recognition in the diagnosis and automatic determination of brain tumors by MRI imaging reduces errors, human error and speeds up detection. The artificial convolutional neural network (CNN) has been widely used in the diagnosis of intelligent cancers and has significantly reduced the error rate. Therefore, in this paper, we present a new method using a combination of convolutional and multi-scale artificial neural network that has significantly increased the accuracy of tumor diagnosis. This study presents a multidisciplinary convolution neural network (MCNN) approach to classifying tumors that can be used as an important part of automated diagnosis systems for accurate cancer diagnosis. Based on the MCNN structure, which presents the MRI image to several deep convolutional neural networks of varying sizes and resolutions, the stage of extracting classical hand-made features is avoided. This approach proposes better classification rates than the classical methods. This study uses a multi-scale convolution technique to achieve a detection accuracy of 95/4%, which shows the efficiency of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call