Abstract
Diagnosis, detection and classification of tumors, in the brain MRI images, are important because misdiagnosis can lead to death. This paper proposes a method that can diagnose brain tumors in the MRI images and classify them into 5 categories using a Convolutional Neural Network (CNN). The proposed network uses a Convolutional Auto-Encoder Neural Network (CANN) to extract and learn deep features of input images. Extracted deep features from each level are combined to make desirable features and improve results. To classify brain tumor into three categories (Meningioma, Glioma, and Pituitary) the proposed method was applied on Cheng dataset and has reached a considerable performance accuracy of 99.3%. To diagnosis and grading Glioma tumors, the proposed method was applied on IXI and BraTS 2017 datasets, and to classify brain images into six classes including Meningioma, Pituitary, Astrocytoma, High-Grade Glioma, Low-Grade Glioma and Normal images (No tumor), the all datasets including IXI, BraTS2017, Cheng and Hazrat-e-Rassol, was used by the proposed network, and it has reached desirable performance accuracy of 99.1% and 98.5%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.