Abstract
CAD results from atherosclerosis, a chronic disease process that has its origin in childhood. Children and adolescents can be at higher risk for CAD by virtue of being from families with premature CAD or familial dyslipoproteinemias. The plasma lipid and lipoprotein levels result from a number of complex metabolic processes that are under the control of genetic and environmental (e.g., diet) influences. The normal ranges of plasma lipids and lipoproteins in children are known, and children and adolescents with dyslipoproteinemia are ordinarily defined as those having levels of plasma total, LDL, or triglyceride above the 95th percentile or with a low HDL cholesterol below the 5th percentile. Children of a parent with documented dyslipoproteinemia or with family history of premature CAD may be screened in the fasting state any time after 2 years of age. Following the exclusion of secondary causes of dyslipoproteinemia, the diagnosis of primary dyslipoproteinemia can be made. Lipoprotein patterns are not diagnostic for a given genotype. Efforts to determine further the biochemical defects responsible for a given phenotype have led to the investigation of gene coding for the apolipoproteins, the key enzymes in the lipoproteins pathways (LPL, HDL, and LCAT) and the receptors that process lipoproteins, such as the LDL receptor and the chylomicron remnant receptor. From a practical standpoint, the diagnosis of the kind of dyslipoproteinemia in a child will depend upon the nature and severity of the dyslipoproteinemia, both in the child (or adolescent) and in parents and siblings. Marked increases in plasma total and LDL cholesterol in the child and in at least one of the parents often reflect the presence of familial hypercholesterolemia, an inherited dominant condition due to a defect in the LDL receptor gene. The triglyceride levels are often normal. If the child has a different dyslipoproteinemia pattern from siblings and parents, then the diagnosis of familial combined hyperlipidemia or hyperapobetalipoproteinemia should be considered. Most children with mild or borderline elevations in total and LDL cholesterol will have polygenic hypercholesterolemia. Triglyceride problems in children and adolescents are relatively uncommon, particularly the more severe hypertriglyceridemia such as that found in lipoprotein lipase and apoC-II deficiency, dysbetalipoproteinemia, and type V hyperlipoproteinemia. High levels of Lp(a) lipoprotein, in isolation or in combination with other dyslipoproteinemia, accelerate risk for CAD. Low levels of HDL cholesterol in the absence of other abnormalities suggest the diagnosis of hypoalphalipoproteinemia.(ABSTRACT TRUNCATED AT 400 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have