Abstract
This study proposed a reverse calculation model of the unique rod pump injection and production system structures in the same well to diagnose and resolve defects, after which dynamometer diagrams of the system production and injection pumps were drawn. The invariant moment feature method was applied to identify seven such characteristics in the injection pump power graph, establishing a downhole system for fault diagnosis in rod pump injection and production systems in the same well using Rough Set(RS)-Learning Vector Quantization(LVQ). On the premise of keeping the classification ability unchanged, the Self-Organizing Map(SOM) neural network was used to discretize the original feature data, while RS theory was employed for attribute reduction. After establishing the LVQ fault diagnosis subsystem, the reduced decision table was entered for learning and training. The test results confirmed the efficacy and accuracy of this method in diagnosing downhole faults in rod pump injection-production systems in the same well. After comparing the test results with the actual working conditions, it can be seen that the rod pump injection-production diagnosis system based on RS-LVQ designed in this paper has a recognition rate of 91.3% for fault types, strong recognition ability, short diagnosis time, and A certain practicality. However, the research object of fault diagnosis in this paper is a single fault, and the actual downhole fault situation is complex, and there may be two or more fault types at the same time, which has certain limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.