Abstract

One of the major complications of diabetes is diabetic retinopathy. As manual analysis and diagnosis of large amount of images are time consuming, automatic detection and grading of diabetic retinopathy are desired. In this paper, we use fundus fluorescein angiography and color fundus images simultaneously, extract 6 features employing curvelet transform, and feed them to support vector machine in order to determine diabetic retinopathy severity stages. These features are area of blood vessels, area, regularity of foveal avascular zone, and the number of micro-aneurisms therein, total number of micro-aneurisms, and area of exudates. In order to extract exudates and vessels, we respectively modify curvelet coefficients of color fundus images and angiograms. The end points of extracted vessels in predefined region of interest based on optic disk are connected together to segment foveal avascular zone region. To extract micro-aneurisms from angiogram, first extracted vessels are subtracted from original image, and after removing detected background by morphological operators and enhancing bright small pixels, micro-aneurisms are detected. 70 patients were involved in this study to classify diabetic retinopathy into 3 groups, that is, (1) no diabetic retinopathy, (2) mild/moderate nonproliferative diabetic retinopathy, (3) severe nonproliferative/proliferative diabetic retinopathy, and our simulations show that the proposed system has sensitivity and specificity of 100% for grading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.