Abstract

Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by the impairment of neurochemical and structural changes leading to cognitive dysfunction. Its cellular and molecular mechanisms are still unclear and clinical approaches are still lacking of promising therapies. In this study, we have investigated the changes of different hippocampal neurons during diabetic encephalopathy in mouse models of diabetes by simultaneously analyzing the activities and synaptic transmission of glutamatergic neurons and GABAergic neurons in brain slices. Compared with the data from a group of control, diabetic encephalopathy permanently impairs the excitability of GABAergic neurons and synaptic transmission mediated by γ-aminobutyric acid (GABA). However, glutamatergic neurons appear to be more excited. Our findings highlight the critical role of the dysfunction of GABAergic neurons and glutamatergic neurons during diabetic encephalopathy in hippocampus to neural impairment as well as a strategy to prevent the function of progress of diabetic encephalopathy by protecting central neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.