Abstract
Pregnancy is a dynamic physiological stressor requiring numerous tightly choreographed alterations to the maternal physiological state. In addition to homeostatic regulation of maternal energy, fluid, and electrolyte balance, the needs of a rapidly developing fetus must also be satisfied. Indeed, contemporary literature is replete with evidence from clinical and experimental studies showing that alterations in the intrauterine environment have considerable impacts on fetal development and long-term health outcomes (1–7). Considering Centers for Disease Control and Prevention reports that the crude prevalence of diabetes has increased by 176% over the last three decades, the need for clinical and experimental interest in this particular health problem is increasing. Gestational diabetes mellitus is widely recognized as a serious concern for expectant mothers and is routinely screened for in midpregnancy. However, the potential for undiagnosed or poorly controlled diabetes before pregnancy to generate significant embryonic and early fetal stress may be less obvious. Indeed, it is not standard clinical practice to evaluate women for glucose intolerance prior to 24 weeks of pregnancy unless obvious risk factors are present. While increased awareness and screening may provide some help in the early identification of diabetes in pregnancies, these will not capture a significant portion of potentially high-risk, diabetic pregnancies in which the pregnancy is not confirmed until a much later time, such as at 8–12 weeks of pregnancy. Thus, improved screening at the primary care level prior to pregnancy is needed to meet the needs of this diabetic patient population. Despite …
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have