Abstract
The critical involvement of ATP-sensitive potassium (KATP) channels in insulin secretion is confirmed both by the demonstration that mutations that reduce KATP channel activity underlie many if not most cases of persistent hyperinsulinemia, and by the ability of sulfonylureas, which inhibit KATP channels, to enhance insulin secretion in type II diabetics. By extrapolation, we contend that mutations that increase beta-cell KATP channel activity should inhibit glucose-dependent insulin secretion and underlie, or at least predispose to, a diabetic phenotype. In transgenic animal models, this prediction seems to be borne out. Although earlier genetic studies failed to demonstrate a linkage between KATP mutations and diabetes in humans, recent studies indicate significant association of KATP channel gene mutations or polymorphisms and type II diabetes. We suggest that further efforts to understand the involvement of KATP channels in diabetes are warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.