Abstract
Medulloblastoma (MB) is the most common high-grade paediatric brain tumour, with group 3 MB patients having the worst prognosis. A high prevalence of group 3 tumours shows overexpression of the MYC oncogene, making it a potential therapeutic target. However, attempts to directly inhibit MYC have so far demonstrated limited success. Dihydroorotate dehydrogenase (DHODH), a crucial enzyme of the pyrimidine biosynthesis process, has emerged as an up-and-coming target in oncology, as its inhibition has shown promise in several cancers. In this study, we investigated the efficacy of brequinar, a DHODH inhibitor, in MB, with a focus on group 3. In vitro, BRQ's effects on cell viability and MYC expression were tested in seven MB cell lines. In vivo, a novel zebrafish xenograft model was used to evaluate BRQ's impact on tumour growth and toxicity. High DHODH expression was identified in group 3 and shh MB subgroups, correlating with poor survival and MYC expression. BRQ demonstrated nanomolar efficacy in inducing apoptosis and reducing MYC expression in group 3 MB cell lines. Finally, we established a novel zebrafish xenograft model and demonstrated that BRQ significantly inhibited tumour growth at non-toxic concentrations in vivo, particularly in the D458 metastatic MB cell line. Our findings indicate that DHODH is a promising therapeutic target in group 3 MBs. Furthermore, BRQ shows potential for clinical application, effectively reducing tumour growth and MYC expression in vitro and in vivo. Moreover, our newly established zebrafish xenograft model offers a promising avenue for rapid in vivo drug testing for use in MB.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have