Abstract
Bone homeostasis is maintained by a balance between resorption of the bone matrix and its replacement by new bone. Osteoclasts play a crucially important role in bone metabolism. They are responsible for bone resorption under pathophysiological conditions. Differentiation of these cells, which are derived from bone marrow cells, depends on receptor activator of NF-κB ligand (RANKL). RANKL-induced osteoclastogenesis is regulated by the phosphoinositide (PI) signaling pathway, in which diacylglycerol (DG) serves as a second messenger in signal transduction. In this study, we examined the functional implications of DG kinase (DGK), an enzyme family responsible for DG metabolism, for osteoclast differentiation and activity. Of DGKs, DGKζ is most abundantly expressed in osteoclast precursors such as bone marrow-derived monocytes/macrophages. During osteoclast differentiation from precursor cells, DGKζ is downregulated at the protein level. In this regard, we found that DGKζ deletion enhances osteoclast differentiation and bone resorption activity under inflammatory conditions in an animal model of osteolysis. Furthermore, DGKζ deficiency upregulates RANKL expression in response to TNFα stimulation. Collectively, results suggest that DGKζ is silent under normal conditions, but it serves as a negative regulator in osteoclast function under inflammatory conditions. Downregulation of DGKζ might be one factor predisposing a person to osteolytic bone destruction in pathological conditions. J. Cell. Physiol. 232: 617-624, 2017. © 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.