Abstract

Bone homeostasis depends on the coordination of osteoclastic bone resorption and osteoblastic bone formation. Receptor activator of NF-kappaB ligand (RANKL) induces osteoclast differentiation through activating a transcriptional program mediated by the key transcription factor nuclear factor of activated T cells (NFAT) c1. Immunoreceptors, including osteoclast-associated receptor (OSCAR) and triggering receptor expressed by myeloid cells (TREM)-2, constitute the co-stimulatory signals required for RANKL-mediated activation of calcium signaling, which leads to the activation of NFATc1. However, it remains unknown whether the expression of immunoreceptors are under the control of NFATc1. Here we demonstrate that the expression of OSCAR, but not that of TREM-2, is up-regulated during osteoclastogenesis and markedly suppressed by the calcineurin inhibitor FK506, suggesting that OSCAR is transcriptionally regulated by NFATc1. NFATc1 expression results in the activation of the OSCAR promoter, which was found to be further enhanced by co-expression of PU.1 and microphthalmia-associated transcription factor (MITF). We further provide evidence that NFATc1 specifically regulates OSCAR by chromatin immunoprecipitation assay and quantification of OSCAR and TREM-2 mRNA in NFATc1-/- cells. Thus, OSCAR but not TREM-2 is involved in the positive feedback loop of the immunoreceptor-NFATc1 pathway during osteoclastogenesis. Although several immunoreceptors have been identified as co-stimulatory molecules for RANKL, the expression and function are differentially regulated. These mechanisms, possibly together with the delicate regulation of their ligands on osteoblasts, may provide the exquisite machinery for the modulation of osteoclastogenesis in the maintenance of bone homeostasis.

Highlights

  • In the osteoclast differentiation program, transcription factor nuclear factor of activated T cells (NFAT) c1 is induced significantly by RANKL [7]

  • 2 The abbreviations used are: BMMs, bone marrow monocyte/macrophage lineage cells; RANKL, receptor activator of NF-␬B ligand; M-CSF, macrophage-colony stimulating factor; NFAT, nuclear factor of activated T cells; TRAP, tartrate-resistant acid phosphatase; ITAM, immunoreceptor tyrosine-based activation motif; FcR␥, Fc receptor common ␥ subunit; DAP12, DNAX activating protein of 12 kDa; OSCAR, osteoclast-associated receptor; paired immunoglobulin-like receptor-A, paired immunoglobulin-like receptor-A; TREM-2, triggering receptor expressed by myeloid cells-2; SIRP␤1, signalregulatory protein ␤1; PGE2, prostaglandin E2; 5Ј RACE, 5Ј rapid amplification of cDNA ends; MITF, microphthalmia-associated transcription factor; siRNA, small interfering RNA; GFP, green fluorescent protein; RT, reverse transcription; GAPDH, glyceraldehyde-3-phosphate dehydrogenase

  • Immunoglobulin-like receptors are a novel class of receptors that are critically involved in the regulation of bone homeostasis [4, 6, 33,34,35]

Read more

Summary

Introduction

In the osteoclast differentiation program, transcription factor nuclear factor of activated T cells (NFAT) c1 is induced significantly by RANKL [7]. Immunoreceptors, including osteoclast-associated receptor (OSCAR) and triggering receptor expressed by myeloid cells (TREM)-2, constitute the co-stimulatory signals required for RANKL-mediated activation of calcium signaling, which leads to the activation of NFATc1.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call