Abstract

Effectively and accurately predicting the effects of interactions between proteins after amino acid mutations is a key issue for understanding the mechanism of protein function and drug design. In this study, we present a deep graph convolution (DGC) network-based framework, DGCddG, to predict the changes of protein-protein binding affinity after mutation. DGCddG incorporates multi-layer graph convolution to extract a deep, contextualized representation for each residue of the protein complex structure. The mined channels of the mutation sites by DGC is then fitted to the binding affinity with a multi-layer perceptron. Experiments with results on multiple datasets show that our model can achieve relatively good performance for both single and multi-point mutations. For blind tests on datasets related to angiotensin-converting enzyme 2 binding with the SARS-CoV-2 virus, our method shows better results in predicting ACE2 changes, may help in finding favorable antibodies. Code and data availability: https://github.com/lennylv/DGCddG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.