Abstract

The mechanism of the Ac-Gly-OH-assisted palladium-catalyzed [3 + 2] annulation of aromatic amides with maleimides is investigated using density functional theory calculations. The results show that the reaction undergoes the sequential steps of N-H bond deprotonation, first benzylic C-H bond activation, maleimide insertion, second meta-C-H bond activation, reductive elimination, and oxidation. The external ligand Ac-Gly-OH acts as the internal base for hydrogen abstraction in the first benzylic C-H bond activation. The maleimide insertion step is found to be the rate-determining step. Based on the nearly same energetic span of the two pathways to generate the enantio products, the computational results are consistent with the experimental observation that the terminal [3 + 2] annulation products are racemic when using an achiral ligand. These calculation results disclose the detailed reaction mechanism and shed light on some experimental ambiguities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call