Abstract

Density functional theory (DFT) was employed to study the dissolution mechanisms of α-cyclodextrin and chitobiose in 1-ethyl-3-methyl-imidazolium acetate ([Emim][OAc]). Geometrical analysis of the studied complexes indicated that both anion and cation in ionic liquid interacting withα-cyclodextrin and chitobiose contributed to the dissolution reaction. Intermolecular interactions in the complexes were identified as non-covalent interactions, such as hydrogen bonds, van der Waals interactions and repulsions, which were considered as the driving force of dissolution. Among them, hydrogen bonding interactions played a dominant role, which was further visualized in the real space by combination of atoms in molecules (AIM) and reduced density gradient (RDG) techniques. The nature of intermolecular orbital interactions was characterized using natural bond orbital (NBO) theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.