Abstract

First-principles calculations were made to explore the structural, electronic, and optical properties of copper oxide (CuO) with monoclinic (m-CuO) and cubic (c-CuO) structures. We calculated the equilibrium structural parameters: lattice parameters (a, b, and c), angle $$\beta $$β, and volume V. The obtained results were in good agreement with the experimental data reported in the literature. The cohesive energy showed that m-CuO is more stable than c-CuO. The band structure indicated that c-CuO is an indirect band gap semiconductor with a band gap of 0.87 eV along R---G, while m-CuO has a metallic behavior. Furthermore, electrovalent and covalent bonds were observed in both c-CuO and m-CuO. The linear optical properties were calculated and analyzed along different polarization directions of the incident light. The results indicated that m-CuO possesses optical anisotropic properties. In particular, c-CuO can be used as a potential UV detector material because of its high absorption coefficient (356351.3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.