Abstract

In this study, we present a systematic computational investigation on the electronic properties of cisplatin (cis-[Pt(Cl)2(NH3)2] (CP) and complex [Pt(Cl)2L] (1) (L = rubeanic acid) employing all-electron density functional theory. In detail, we analyzed essential molecular properties such as geometrical parameters, ionization energies, electron affinity, highest occupied molecular orbital, and lowest unoccupied molecular orbital energies. Concerning CP, molecule 1 exhibited improved lipophilicity and a pronounced electrophilic property. Furthermore, to investigate and compare the DNA binding capability between CP and molecule 1, we extended the investigation to the guanine and adenine derived complexes, respectively. Complexes of molecule 1 with the adenine and guanine bases followed a similar trend of stability found for CP systems, with the highest affinity found for guanine complexes. Altogether, molecule 1 displayed promising physicochemical and druglikeness features to serve as a starting point for developing a drug-like enough that could be therapeutically useful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call