Abstract

The organic compounds with a π-bond system lead to electric charge delocalization which enables them to reveal fascinating nonlinear optical properties. Mono-carbonyl curcuminoids also have an appealing skeleton from the conjugation view point. Interesting chemical structures of the 3,5-bis(arylidene)-N-benzenesulfonyl-4-piperidone derivatives motivated us to perform density functional theory (DFT)-based studies. Therefore, computations using the B3LYP/6-311G(d,p) functional of DFT were executed to explore geometric parameters, highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energies, and natural bond orbital (NBO) analyses. Moreover, three different functionals such as HF, B3LYP, and M06 with the 6-311G(d,p) basis set were used to investigate the average polarizability ⟨α⟩ and first hyperpolarizability (βtot)-based properties of all compounds. A good concurrence among calculated and experimental parameters was obtained through root mean square error calculations. The molecular stability of piperidone derivatives was examined using the Hirshfeld surface and NBO analyses. Natural population analysis was also performed to obtain insights about atomic charges. Calculated HOMO–LUMO energies showed that charge transfer interactions take place within the molecules. Moreover, global reactivity parameters including electronegativity, chemical hardness, softness, ionization potential, and electrophilicity were calculated using the HOMO and LUMO energies. The average polarizability ⟨α⟩ and first hyperpolarizability (βtot) values of all compounds were observed to be larger in magnitude at the aforesaid functional than the standard compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call