Abstract

The selective corrosion of NiTi alloys was studied using density functional theory calculations, and the dissolution trends of the NiTi-B2 and NiTi-B19' phases in the initial oxidation stage were compared to predict their corrosion difference. The dissolution process of Ni and Ti was simulated by creating Ni or Ti vacancies on the unoxidized and oxidized NiTi alloy surfaces. The results show that the surface vacancy formation energy of Ti vacancies is higher than that of Ni vacancies, indicating that Ti is more difficult to dissolve than Ni. Furthermore, oxidation promotes and impedes the dissolution of Ni and Ti, respectively. This study improves the fundamental understanding of the corrosion mechanism of NiTi alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.