Abstract
Alumina (Al2O3), a suitable replacement for silica (SiO2) as gate oxide in metal oxide semiconductor field effect transistors (MOSFET), is deposited on the amorphous silica layer of the semiconductor substrate by atomic layer deposition (ALD) using trimethylaluminum (TMA) and water as precursors. A computationally efficient model for the hydroxylated amorphous silica surface is obtained by means of molecular dynamics and is used to investigate the reason behind the observed growth inhibition during alumina ALD. The reactions of TMA are investigated by periodic DFT calculations on surfaces with hydroxyl coverage of 3.38 OH nm–2 and 5.07 OH nm–2. The formation of SiCH3 surface species is found to be possible only on the less hydroxylated surface during the first TMA half-cycle, while the subsequent reaction of water with the SiCH3 surface species is found to be highly activated (Ea = 196 kJ mol–1). Since these SiCH3 surface species are rather unreactive toward water, fewer hydroxyls are regenerated during t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.