Abstract
The ensemble effect due to variation of Pd content in Pd-Au alloys have been widely investigated for several important reactions, including CO2 reduction reaction (CO2 RR), however, identifying the stable Pd arrangements on the alloyed surface and picking out the active sites are still challenging. Here we use a density functional theory (DFT) based machine-learning (ML) approach to efficiently find the low-energy configurations of Pd-Au(111) surface alloys and the potentially active sites for CO2 RR, fully covering the Pd content from 0 to 100 %. The ML model is actively learning process to improve the predicting accuracy for the configuration formation energy and to find the stable Pd-Au(111) alloyed surfaces, respectively. The local surface properties of adsorption sites are classified into two classes by the K-means clustering approach, which are closely related to the Pd content on Au surface. The classification is reflected in the variation of adsorption energy of CO and H: In the low Pd content range (0-60 %) the adsorption energies over the surface alloys can be tuned significantly, and in the medium Pd content (37-68 %), the catalytic activity of surface alloys for CO2 RR can be increased by increase the Pd content and attributed to the meta-stable active site over the surface. Thus, the active site-dependent reaction mechanism is elucidated based on the ensemble effect, which provides new physical insights to understand the surface-related properties of catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.