Abstract
The CO adsorption on ordered Cu-Pd alloy surfaces and surface alloys has been studied using density functional theory (DFT) within the framework of the generalized gradient approximation (GGA). On the surface alloys, the CO adsorption energy at the top sites decreases with increasing concentration of the more reactive metal Pd. This surprising ligand effect is caused by the effective compressive strain induced by the larger size of the Pd atoms. On the other hand, at the most favorable adsorption sites the CO binding becomes stronger with increasing Pd concentration which is caused by an ensemble effect related to the availability of higher coordinated adsorption sites. At the surfaces of the bulk alloys, the trends in the adsorption energy as a function of the Pd concentration are less clear because of the strong Pd-Cu interaction and the absence of effective strain effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.