Abstract

The geometry, electronic structure, polarizability and hyperpolarizability of organic dye sensitizer TA-St-CA, which contains a π-conjugated oligo-phenylenevinylene unit with an electron donor–acceptor moiety, was studied using density functional theory (DFT), and the electronic absorption spectrum was investigated via time-dependent DFT (TD-DFT) with several hybrid functionals. The calculated geometry indicates that the strong conjugated effects are formed in the dye. The TD-DFT results show that the hybrid functional PBE1PBE and MPW1PW91 are more suitable than B3LYP for calculating electronic absorption spectra. The features of electronic absorption spectra were assigned on account of the qualitative agreement between the experiment and the calculations. The absorption bands in visible and near-UV region are related to photoinduced electron transfer processes, and the diphenylaniline group is major chromophore that contributed to the sensitization, and the interfacial electron transfer are electron injection processes from the excited dyes to the semiconductor conduction band. Compared with the similar dye D5, the good performance of TA-St-CA in dye-sensitized solar cells may be resulted from the higher energy level of the lowest unoccupied molecular orbital and the larger oscillator strengths for the most excited states with intramolecular electron transfer character.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call