Abstract

In this study, density functional theory calculation on mono-cationic cation-π complexes of diborynes has been made to understand the interaction in cation-π complexes of diboryne. Results suggest that apart from the smaller cations Li+ and Na+, larger cation like K+ ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis 11B, 13C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li+) with high electronegativity interacts more strongly compared to larger cation (K+). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.11B-NMR, 13C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.