Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent nicotine-based carcinogen that generates many DNA lesions, including the HOCH2-C, HOCH2-G, and HOCH2-A hydroxymethyl adducts. Despite all lesions containing an altered exocyclic amino group, which allows the hydroxymethyl group to be directed away from the Watson-Crick binding face, only the most persistent adenine adduct is mutagenic. As a first step toward understanding this differential mutagenicity, density functional theory (DFT) and molecular dynamics (MD) simulations were used to gain atomic-level structural details of these DNA damage products. DFT calculations reveal that all three lesions exhibit conformational diversity. However, regardless of the hydroxymethyl-nucleobase orientation, both DFT and MD simulations highlight that HOCH2-C and HOCH2-G form pairs with the canonical complementary base (G and C, respectively) that are structural and energetically preferred over mispairs. In contrast, depending on the hydroxymethyl-nucleobase orientation, the Watson-Crick HOCH2-A:T pair can become significantly destabilized relative to undamaged A:T. As a result, HOCH2-A mispairs with G, C, and A are energetically accessible and maintain key geometrical features of canonical DNA. Overall, our data directly correlate with the reported differential mutagenicity of the hydroxylmethyl lesions and will encourage future studies to further uncover the cellular impact of the most persistent adenine lesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.