Abstract
Ulna and radius segmentation of dual-energy X-ray absorptiometry (DXA) images is essential for measuring bone mineral density (BMD). To develop and test a novel deep learning network architecture for robust and efficient ulna and radius segmentation on DXA images. This study used two datasets including 360 cases. The first dataset included 300 cases that were randomly divided into five groups for five-fold cross-validation. The second dataset including 60 cases was used for independent testing. A deep learning network architecture with dual residual dilated convolution module and feature fusion block based on residual U-Net (DFR-U-Net) to enhance segmentation accuracy of ulna and radius regions on DXA images was developed. The Dice similarity coefficient (DSC), Jaccard, and Hausdorff distance (HD) were used to evaluate the segmentation performance. A one-tailed paired t-test was used to assert the statistical significance of our method and the other deep learning-based methods (P < 0.05 indicates a statistical significance). The results demonstrated our method achieved the promising segmentation performance, with DSC of 98.56±0.40% and 98.86±0.25%, Jaccard of 97.14±0.75% and 97.73±0.48%, and HD of 6.41±11.67 pixels and 8.23±7.82 pixels for segmentation of ulna and radius, respectively. According to statistics data analysis results, our method yielded significantly higher performance than other deep learning-based methods. The proposed DFR-U-Net achieved higher segmentation performance for ulna and radius on DXA images than the previous work and other deep learning approaches. This methodology has potential to be applied to ulna and radius segmentation to help doctors measure BMD more accurately in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.