Abstract
AbstractA Deza graph with parameters is a ‐regular graph with vertices, in which any two vertices have or () common neighbours. A Deza graph is strictly Deza if it has diameter , and is not strongly regular. In an earlier paper, the two last authors et al characterised the strictly Deza graphs with and , where is the number of vertices with common neighbours with a given vertex. Here, we start with a characterisation of Deza graphs (not necessarily strictly Deza graphs) with parameters . Then, we deal with the case and , and thus complete the characterisation of Deza graphs with . It follows that all Deza graphs with , and can be made from special strongly regular graphs, and in fact are strictly Deza except for . We present several examples of such strongly regular graphs. A divisible design graph (DDG) is a special Deza graph, and a Deza graph with is a DDG. The present characterisation reveals an error in a paper on DDGs by the second author et al. We discuss the cause and the consequences of this mistake and give the required errata.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have