Abstract

With the increase in applications of superparamagnetic iron oxide nanoparticles (SPIONs) in biomedicine, it is essential to investigate the bio‑security of these nanoparticles, especially with respect to the human immune system. In the present study, the biological effects of dextran‑coated superparamagnetic iron oxide nanoparticles (Dex‑SPIONs) on human primary monocyte cells were evaluated. The results of the present study demonstrated that Dex‑SPIONs can be identified in phagosomes or freed in the cytoplasm and did not affect cell viability or induce apoptosis. Notably, there were certain bulky vacuoles and a number of pseudopodia from the cell membrane, suggesting potential activation of human monocyte cells. In addition, the expression levels of pro‑inflammatory cytokines interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were also increased following treatment with Dex‑SPIONs. Simultaneously, the phosphorylation levels of mitogen‑activated protein kinase (MAPK) p38, c‑Jun N‑terminal kinase 1 and extracellular signal regulated kinase were markedly enhanced following nanoparticle exposure and MAPK inhibitors could abate the production of IL‑1β and TNF‑α. The results of the present study demonstrated that Dex‑SPIONs could activate human monocyte cells and that activation of MAPK pathway may be involved in these effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call