Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

Highlights

  • Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as T2 contrast agents for magnetic resonance imaging (MRI) [1] and are being considered as vehicles for drug delivery using MRI navigation [2]

  • Longitudinal (R1) and transverse (R2) relaxation rate measurements at 0.47 and 1.41T were obtained on Minispec Mq 20 and Mq 60 spin analyzers (Bruker, Karlsruhe, Germany) and nuclear magnetic relaxation dispersion (NMRD) profiles were recorded on a Spinmaster-FFC 2000 relaxometer (Stelar SRT, Mede, Italy)

  • The CSNPs had an average size of 44 nm (± 3.5 nm) as determined by TEM and the nanomag-D-spio displayed an average size of 5.7 nm (±2.1 nm), in agreement with the data supplied by the manufacturer (Fig 1A and 1B)

Read more

Summary

Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as T2 contrast agents for magnetic resonance imaging (MRI) [1] and are being considered as vehicles for drug delivery using MRI navigation [2]. Surface modification of SPIONs provides better chemical. Proteomics Analysis Reveals Distinct SPION Coronas (BF, JL), and the European Commission 309329) (BF) and FP7-eNANOMAPPER, grant agreement no. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call