Abstract

Predicting user positive response (e.g., purchases and clicks) probability is a critical task in Web applications. To identify predictive features from raw data, the state-of-the-art extreme deep factorization machine model (xDeepFM) introduces a new interaction network to leverage feature interactions at the vector-wise level explicitly. However, since each hidden layer in the interaction network is a collection of feature maps, it can be viewed essentially as an ensemble of different feature maps. In this case, only using a single objective to minimize the prediction loss may lead to overfitting and generate correlated errors. In this article, an ensemble diversity enhanced extreme deep factorization machine model (DexDeepFM) is proposed, which designs the ensemble diversity measure in each hidden layer and considers both ensemble diversity and prediction accuracy in the objective function. In addition, the attention mechanism is introduced to discriminate the importance of ensemble diversity measures with different feature interaction orders. Extensive experiments on three public real-world datasets are conducted to show the effectiveness of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.