Abstract

A single intracerebroventricular injection of dexamethasone (DEX) rapidly (within 30 min) suppresses brown adipose tissue thermogenesis and increases plasma insulin concentrations in adrenal-ectomized (ADX) ob/ob mice but not in ADX lean mice. Intracerebroventricular neuropeptide Y (NPY) administered intracerebroventricularly causes these same metabolic changes within 30 min in both ob/ob and lean ADX mice. We therefore hypothesized that DEX exerts these rapid-onset metabolic actions in ob/ob mice via a phenotype-specific enhancement of NPY secretion within the central nervous system. In support of this hypothesis, DEX (a type II glucocorticoid receptor agonist) administered intracerebroventricularly selectively lowered NPY concentrations in the whole hypothalamus of ADX ob/ob mice by 35% and in the arcuate nucleus region by approximately 70% within 30 min but not in the brain stem or hippocampus or in any of these regions of lean mice. DEX also functioned in vitro to enhance depolarization-dependent release of NPY from hypothalamic blocks of ADX ob/ob mice but not of ADX lean mice. Thus DEX acts in the hypothalamus of ob/ob mice in a phenotype-specific manner to evoke rapid transport of NPY from cell bodies within the arcuate nucleus to terminal regions including the dorsomedial and ventromedial hypothalamic regions for release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call