Abstract

The in vitro osteogenic effects of fluoride have not always been consistently observed in human bone cells. The present study sought to test if dexamethasone (Dex) could potentiate the action of fluoride to increase the detectability of the stimulatory effects of fluoride on [3H]thymidine incorporation, alkaline phosphatase (ALP) specific activity, collagen synthesis, and osteocalcin secretion in human TE85 osteosarcoma cells. Neither Dex at 10(-10)-10(-6) M or fluoride at a mitogenic dose (100 microM) had any consistent stimulatory effects on thymidine incorporation. When the cells were treated with both agents simultaneously, significant and highly reproducible stimulations were observed. The mitogenic effects of the two agents were confirmed with cell number counting. Analysis of variance (ANOVA) revealed a significant interaction (P < 0.001) between fluoride and Dex on cell proliferation. The enhancing effect of Dex on [3H]thymidine incorporation was not due to a shift of the optimal dose response of fluoride. Though fluoride alone or Dex alone also had no consistent effect on ALP specific activity, the co-treatment with fluoride and Dex for 24 hours produced significant (P < 0.001, ANOVA) stimulation in ALP specific activity. Fluoride alone had no consistent effect on collagen synthesis and on 1, 25(OH)2D3-dependent osteocalcin secretion, whereas Dex treatment consistently inhibited these two osteoblastic parameters in a dose-dependent manner. However, both the collagen synthesis and osteocalcin secretion rates were significantly higher (P < 0.001 ANOVA for each) when the cells were co-treated with Dex and fluoride (100 microM) than when they were treated with Dex alone. Thus, these data indicate that the response in collagen synthesis and osteocalcin secretion to fluoride stimulation was more readily observed in the presence of Dex than in its absence. ANOVA analysis revealed that the interaction between fluoride and Dex on collagen synthesis, but not the 1,25(OH)2D3-dependent osteocalcin secretion, was significant (P < 0.02). In summary, we have demonstrated for the first time that in TE85 cells (1) Dex potentiated the effects of fluoride on cell proliferation, ALP specific activity, and collagen synthesis; (2) while Dex at 10(-7)-10(-6) M alone inhibited the collagen synthesis and at 10(-9)-10(-6) M reduced osteocalcin secretion, Dex at 10(-8)-10(-6) M significantly stimulated the proliferation of TE85 cells; and (3) Dex interacted with fluoride to increase the percentage of experiments showing an osteogenic action of fluoride. In conclusion, the in vitro osteogenic actions of fluoride in human TE85 cells are more consistently observed in the presence than in the absence of Dex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.