Abstract

The in vitro drug release in an aqueous medium is a critical performance metric for a sustained release drug product. During long-term release studies, drugs may degrade in the release medium, and such degradation can lead to errors in drug release quantitation. Using dexamethasone as a model drug and LC-MS/MS methods employing dexamethasone-d4 as an internal standard, this study identified that dexamethasone can degrade into 13 major degradation products in phosphate buffered saline (PBS) as a function of time, temperature (25, 37, and 45°C), and light exposure. A putative scheme for dexamethasone degradation pathways in PBS has been proposed. In proof-of-concept studies, the analytical method was used to quantitate dexamethasone and its degradation products during in vitro release studies with sustained release dexamethasone-poly(D,L-lactide-co-glycolide) (PLGA) implants incubated in phosphate buffer saline (PBS). Further, mathematical approaches were developed to estimate drug release from implants after accounting for drug degradation in PBS. The LC-MS/MS analytical method and the mathematical approaches developed could be used for assessing the stability and/or release of dexamethasone during manufacturing, storage, and use of various dosage forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call