Abstract

Hormones may produce long-term effects on excitability by regulating K+ channel gene expression. Previous studies demonstrated that administration of dexamethasone, a glucocorticoid receptor agonist, to adrenalectomized rats, rapidly induces Kv1.5 K+ channel expression in the ventricle of the heart. Here, RNase protection assays and Northern blots are used to examine the cell type specificity of dexamethasone action and to test whether Kv1.5 gene expression can be regulated by a physiological stimulus. We show that Kv1.5 mRNA expression in the central nervous system is highest in the hypothalamus. However, dexamethasone treatment of adrenalectomized rats fails to affect Kv1.5 mRNA levels in hypothalamus or lung. In contrast, dramatic upregulation of Kv1.5 mRNA is seen in skeletal muscle and pituitary. Increased Kv1.5 message also is found in isolated ventricular cardiomyocytes following in vivo treatment with dexamethasone. Finally, it is shown that cold stress of intact rats significantly increases cardiac Kv1.5 mRNA expression. We conclude that dexamethasone induction of the Kv1.5 gene is tissue-specific. Furthermore, our results suggest that stress may act via glucocorticoids to increase Kv1.5 gene expression in ventricular cardiomyocytes. Hence, K+ channel gene expression can be influenced by physiological and pharmacological stimuli. Copyright © 1996 Elsevier Science Ltd

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.