Abstract

Although infants with persistent pulmonary hypertension of the newborn (PPHN) experience some relief and therapeutic benefit from current therapies, over 50% have a limited or transient response and significant morbidity. There is no consistency in the best first line treatment throughout hospitals in the United States. Ventilation with high levels of oxygen or inhaled nitric oxide (NO) are typical strategies for improving the extracorporeal membrane oxygen, although they remain unproven to increase survival rates. While oxygen may stimulate endothelial nitric oxide synthase (eNOS) and NO production dilating the pulmonary vasculature, it also fuels the production of reactive oxygen species (ROS). ROS is likely to have counterproductive effects; in addition to stimulating vascular smooth muscle cell proliferation and increasing vascular tone, ROS may directly regulate eNOS and NO. The recent article by Farrow and colleagues (3) in AJP-Lung investigates the role of ROS on eNOS. By using recombinant human superoxide dismutase (rhSOD), they observed 1) increased eNOS activity and expression, 2) increased tetrahydrobiopterin (BH4), a cofactor critical to the function of eNOS, and 3 )a decrease in oxidative stress, in addition to the stimulation of NO production and ultimately pulmonary vasodilatation. The observations they made may be paramount to increasing the survival of infants with PPHN and may lead to an adapted treatment regimen that addresses the pitfalls of current therapeutic approaches. PPHN When the pulmonary circulation fails to respond to natural stimuli, including increased oxygen tension, ventilation, and shear stress, it does not undergo the shift from the high resistance state in utero to a postnatal low resistance system, enabling efficient pulmonary gas exchange and oxygenation. Impaired NO-cGMP signaling has been shown to be critical to the regulation of pulmonary circulation in the newborn, and clinical strategies have involved administration of inhaled NO since the early 1990s (6, 10). While effective in immediate relief due to vasodilatation, the infants can enter an inhaled NO dependency state, and thus inhaled NO proffers poor long-term relief. The necessity for extensive research into the regulation of perinatal circulation and the changes that occur upon ventilation have led to improved and more specific therapeutic approaches for infants with PPHN over the past 30 years. Despite this, PPHN is still associated with significant shortterm and long-term morbidity. Farrow et al. (3) strive to dissect the signaling pathways, determining the impact of ROS and elucidating the potential of decreasing oxidative stress as a therapeutic approach in PPHN. This study is published in a milieu of recent publications exploring the functional abnor

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call