Abstract

Long emission wavelengths, high fluorescence quantum yields (FQYs), and large Stokes shifts are highly desirable features for fluorescent probes in biological imaging. However, the current development of many fluorescent probes remains largely trial-and-error and lacks efficiency. Moreover, to achieve far-red/near-infrared emission, a significant extension in the -conjugation is usually adopted but accompanied by other drawbacks such as fluorescence loss. In this review, we discuss an effective red-shifting strategy built upon the green fluorescent protein chromophore, which enables a synergistic tuning of both the electronic ground and excited states. This approach could shorten the path toward redder emission in comparison to the conventional intramolecular charge transfer (ICT) strategy. We envision that this spectroscopy and computation-aided strategy may advance the noncanonical fluorescent protein design and be generalized to various fluorophore scaffolds for redder emission while preserving other superior properties such as high FQYs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call