Abstract

The perovskite solar cells (PSCs) which are Pb free have gained much research enthusiasm because of the toxic nature of the lead-based halide perovskite. MASnI3 is a feasible contrasting option to MAPbX3, in light of the fact that it has broader visible absorption spectrum range and smaller band gap value of 1.3 eV than MAPbI3. The advance of fabricating Sn-based PSCs with great strength has animated the investigations of these MASnI3-based solar cells enormously. In this paper, planar heterojunction design of Sn-based iodide PSC is proposed. The copper antimony sulfide (CuSbS2) which is inorganic material is used for the very first time as hole transport layer (HTL) in conjunction with the MASnI3 active layer in this design because of its inherent features (high abundance and high open-circuit voltage) as compared to the unstable and costly Spiro-MeOTAD. With integration of CuSbS2 as a HTL in the design, the outcomes are competent enough with Jsc of 31.7 mA/cm2, Voc of 0.936 V, FF of 81.1% and PCE of 24.1%. The outcomes demonstrate that the Pb-free MASnI3 PSC is a future perspective to the photovoltaic community in terms of environment friendly nature and yielding comparative high efficiency as of lead-based halide perovskite cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.