Abstract

Unmanned aircraft vehicles (UAVs)-enabled mobile edge computing (MEC) can enable Internet of Things devices (IoTD) to offload computing tasks to them. Considering this, we study how multiple aerial service providers (ASPs) compete with each other to provide edge computing services to multiple ground network operators (GNOs). An ASP owning multiple UAVs aims to achieve the maximum profit from providing MEC service to the GNOs, while a GNO operating multiple IoTDs aims to seek the computing service of a certain ASP to meet its performance requirements. To this end, we first quantify the conflicting interests of the ASPs and GNOs by using different profit functions. Then, the UAV scheduling and resource allocation is formulated as a multi-objective optimization problem. To address this problem, we first solve the UAV trajectory planning and resource allocation problem between one ASP and one GNO by using the Lagrange relaxation and successive convex optimization (SCA) methods. Based on the obtained results, the GNOs and ASPs are then associated in the framework based on the matching theory, which results in a weak Pareto optimality. Simulation results show that the proposed method achieves the considerable performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.