Abstract
The design and characteristics of junctionless (JL) bulk FinFET devices and circuits are compared with the conventional inversion-mode (IM) bulk FinFET using 3-D quantum transport device simulation. The JL bulk FinFET shows better short channel characteristics, including drain-induced barrier lowering, subthreshold slope, and threshold voltage (Vth) roll-off characteristics at supply voltage (VDD) 1 V. Analyses of electron density and electricfield distributions in on-state and off-state also show that the JL devices have better on-off current ratios. Regarding design aspects, the effects of channel doping concentration (Nch) and Fin height (H)/width (W) on device Vth are also compared. In addition, the Vth of the proposed JL bulk FinFET can be easily tuned by an additional parameter, substrate doping concentration (Nsub). Inverter performance and static random access memory (SRAM) circuit performance are also compared using a coupled device-circuit simulation. The high-to-low delay time (tHL) and low-to-high delay time (tLH) of the inverter with JL bulk FinFET are smaller than the inverter with IM bulk FinFET. The JL bulk FinFET SRAM cell also provides a similar static transfer characteristic to those of IM bulk FinFET SRAM cell, which show large potential in digital circuit application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.