Abstract
AbstractWall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 0.1-25 mN depending on the aspect ratio of the walls. A central-plastic-zone criterion is proposed in view of TEM images of indented walls and allows predicting the response deviation of a given wall knowing its width. The application of substrate patterning for optoelectronic devices is proposed in the perspective of eliminating residual dislocations appearing in mismatched structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.