Abstract

The use of large plastic balloons as a research tool has increased dramatically since the developmental work of the early 1950's. The continuing demand by the scientific community for higher float altitudes, heavier payloads, and longer flight durations has severely challenged current design and analysis procedures. Previous simplifying assumptions concerning the balloon shape and stress must be reassessed in order to develop better analytical design and stress analysis procedures. A brief history of balloon stress analysis procedures and accompanying assumptions are presented. The limitations of old methods and recent improvements by Smalley, Alexander, Rand, and others are examined and compared. Finite difference and finite element techniques offer promise for more accuracy with fewer over-simplifying assumptions. Available methods are examined for potential use in various stress analysis requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call