Abstract

Equine estrogens (EQs) are steroidal hormones isolated from the urine of pregnant mares and are used in the formulation of human medications. This study initially investigated the embryonic developmental toxicity of equilin (Eq) and equilenin (Eqn) in medaka (Oryzias latipes). Malformations were observed in embryos exposed to nominal concentrations of 1 and 10 mg/L of Eq and Eqn. Delayed hatching was observed at 1 mg/L of Eq. To further investigate the molecular mechanism of developmental toxicity caused by Eq and Eqn, transcriptome and bioinformatics analyses were performed. Among 2016 and 3855 total differentially expressed genes (DEGs), 1117 DEGs overlapped between Eq. (55.4 % of total DEGs) and Eq. (29.0 % of total DEGs). Gene ontology indicated effects in terms related to blood circulation and cell junctions. Pathway analyses using DEGs revealed that both Eq and Eqn treatments at 10 mg/L affected various KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, such as neuroactive ligand-receptor interaction, mitogen-activated protein kinase signaling, retinol metabolism, and cytokine–cytokine receptor interaction. These results suggest that the disruption of these KEGG pathways is involved in the developmental toxicity of EQs in medaka embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call