Abstract
Gonadal differentiation in frogs is affected by sex steroids and thyroid hormones (THs); however, the genes controlling differentiation and the molecular effects of THs in the gonad are not clear and have only been investigated in a few anuran species. In this study, we established developmental profiles and TH regulation of sex steroid- and TH-related genes in the gonad-mesonephros complex (GMC) of the túngara frog (Physalaemus pustulosus), and compared the results to our previous research in another tropical frog, Silurana tropicalis. The developmental profiles allowed us to identify three genes as markers of ovarian development. During metamorphosis, aromatase (cyp19), estrogen receptor α, and steroid 5α-reductase 1 (srd5alpha1) were higher in the GMC of putative and morphological females. Acute exposure to triiodothyronine (T3) decreased GMC expression of srd5alpha1 and cyp19, while increasing TH-related genes in premetamorphic tadpoles. The regulation of sex steroid-related genes differed significantly from our previous study in S. tropicalis. P. pustulosus and S. tropicalis share ecological, developmental, and reproductive characteristics; however, they are not closely related. These results along with our previous research in the tadpole brain support the hypothesis that evolutionary convergence is not important in understanding differences in the effects of TH on sex steroid-related genes in frogs. Finally, we propose that T3 induces male gonadal development but this can be achieved through different mechanisms depending on the species.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have