Abstract

Sharp wave and associated fast oscillatory ripples (140–200Hz) in the cornu ammonis 1 region are the most synchronous hippocampal patterns in the adult rat. Spike sequences associated with sharp waves are believed to play a critical role in transferring transient memories from the hippocampus to the neocortex and the emergence of superfast ripples is pathognostic in temporal lobe epilepsy. Sharp waves in cornu ammonis 1 stratum radiatum are induced by a strong depolarization by the cornu ammonis 3 Schaffer collaterals, due to the synchronous discharge of cornu ammonis 3 pyramidal cells. Although during the first postnatal week, sharp-wave events are associated with hippocampal unit bursts in the pyramidal layer, ripple oscillations are absent. We investigated the emergence of fast-field oscillations in rat pups ranging from postnatal day 12–20 by recording with wire tetrodes in freely behaving pups and with 16-site linear silicon probes in head fixed animals. Cornu ammonis 1 pyramidal cell layer was determined by the presence of multiple unit activity and a reversal of the field potential in the deeper electrode sites. On-line verification of the recording sites was determined via an evoked response to commissural stimulation, showing a clear reversal in the field potential. Sharp wave-associated fast-field oscillations did not begin to emerge until the end of the second postnatal week and showed a gradual increase until day 18. Once ripples emerged, the intra-ripple frequency assumed adult values. The developmental time course of the ripple parallels the switch in the GABA A receptor-mediated signaling from excitation to inhibition. The time course may also reflect hitherto unidentified emergence of neuronal gap junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.